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Introduction: Diffusion Tensor Imaging (DTI) has revealed measurable changes in 
the brains of patients with persistent post-concussive syndrome (PCS). Because of 
inconsistent results in univariate DTI metrics among patients with mild traumatic 
brain injury (mTBI), there is currently no single objective and reliable MRI index for 
clinical decision-making in patients with PCS.

Purpose: This study aimed to evaluate the performance of a newly developed 
PCS Index (PCSI) derived from machine learning of multiparametric magnetic 
resonance imaging (MRI) data to classify and differentiate subjects with mTBI and 
PCS history from those without a history of mTBI.

Materials and methods: Data were retrospectively extracted from 139 patients 
aged between 18 and 60  years with PCS who underwent MRI examinations at 
2  weeks to 1-year post-mTBI, as well as from 336 subjects without a history of 
head trauma. The performance of the PCS Index was assessed by comparing 
69 patients with a clinical diagnosis of PCS with 264 control subjects. The PCSI 
values for patients with PCS were compared based on the mechanism of injury, 
time interval from injury to MRI examination, sex, history of prior concussion, loss 
of consciousness, and reported symptoms.

Results: Injured patients had a mean PCSI value of 0.57, compared to the control 
group, which had a mean PCSI value of 0.12 (p  =  8.42e-23) with accuracy of 88%, 
sensitivity of 64%, and specificity of 95%, respectively. No statistically significant 
differences were found in the PCSI values when comparing the mechanism of 
injury, sex, or loss of consciousness.

Conclusion: The PCSI for individuals aged between 18 and 60  years was able to 
accurately identify patients with post-concussive injuries from 2  weeks to 1-year 
post-mTBI and differentiate them from the controls. The results of this study 
suggest that multiparametric MRI-based PCSI has great potential as an objective 
clinical tool to support the diagnosis, treatment, and follow-up care of patients 
with post-concussive syndrome. Further research is required to investigate the 
replicability of this method using other types of clinical MRI scanners.
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Introduction

Traumatic brain injuries (TBIs) are evaluated based on clinical 
symptoms, neurological impairments, and imaging findings (1–5). 
The majority (80–90%) of TBIs are mild, characterized by Glasgow 
Coma Scale scores of 13–15 (5–7). Mild TBI (mTBI) and concussion 
are often used interchangeably, with sports-related concussions being 
a subtype (6, 8). It is estimated that 1.4–3.8 million concussions occur 
annually in the US and are caused by sports, recreational activities, 
falls, assaults, and motor vehicle accidents (1, 2, 4, 5).

Symptoms associated with concussions include headaches, 
amnesia, dizziness, fatigue, drowsiness, sleep disturbance, irritability, 
blurred vision, nausea, hypersensitivity to light and noise, emotional 
lability, anxiety, depression, deficits in attention, concentration, 
memory, executive function, balance problems, and/or loss of 
consciousness for less than 30 min (5, 7–14). Loss of consciousness 
occurs in 10–20% of concussions but is not required for diagnosis 
(15–17). Most symptoms resolve within 14 days in adults and 
4–6 weeks in children (4, 6, 7, 16–18). However, 15–30% of mTBI 
patients may experience post-concussion symptoms, referred to as 
persistent post-concussive syndrome (PCS), for several months or 
longer (4, 6, 7, 17–20). In the Prospective TRACK-TBI study, 33% of 
patients remained functionally impaired 3 months after injury, and 
22.4% were not at full functional status 1 year after injury (4), further 
confirming that some patients with mTBI may experience long-term 
disability (7). Schneider et  al. reported a poor 1-year cognitive 
outcome in 13.5% of patients with mTBI (21).

In most post-acute patients with a history of mTBI and PCS, there 
is no radiological evidence of brain injury using computed tomography 
(CT) or conventional MRI techniques (4, 5, 7, 18, 22). Recently, an 
advanced MRI technique, Diffusion Tensor Imaging (DTI), has been 
used to evaluate mild traumatic injuries in the acute, subacute, and 
delayed phases (5, 7, 18). However, literature reviews have found 
variable, inconsistent, or negative findings in the diffusion metrics 
between patients with PCS and controls (5, 6, 18, 22). Additionally, in 
patients with PCS or post-injury behavioral changes (18), diffusion 
imaging abnormalities were inconsistent. The inconsistencies in group 
differences in the locations of DTI-related white matter abnormalities 
have been proposed to be  related to the heterogeneous nature and 
symptoms of mTBI, different mechanisms of injury, variable locations 
and phases of injury, differences in DTI protocols, and/or the limited 
numbers of control and subject populations (5, 18, 23). Previous studies 
using DTI to evaluate PCS at the group level have focused on univariate 
analyses of diffusion metrics such as FA, ADC, MD, RD, and AD (24). 
Although microstructural changes in DTI metrics have been 
demonstrated at the group level in patients with PCS, the complexity of 
advanced DTI post-analysis limits its application of these changes at the 
individual level in clinical settings for diagnosis, treatment, and 
follow-up care (18, 25).

Despite advances in measuring changes in the brain related to 
traumatic brain injury, there is currently no objective and reliable MRI 
assessment to guide clinical decision-making for individual patients 

with mTBI and PCS (18, 24, 25). The lack of objective data on mTBI 
in patients leads to challenges in the diagnosis, prognosis, and 
treatment of patients with a history of mTBI and PCS, based on 
subjective symptom reports and clinical examinations (25). To address 
this issue, machine learning (ML) approaches have been suggested 
(26–28). ML has also been applied to MRI data from patients with 
traumatic brain injuries. For example, Mitra et al. used a ML technique 
to classify patients with a history of mild, moderate, or severe TBI, 
based on altered structural connectivity patterns within intra-and 
interhemispheric white matter pathways secondary to trauma (28). 
Additionally, Goswami et al. reported that for retired football players 
with a history of multiple concussions, ML of mean and radial 
diffusion data showed alterations involving the uncinate fasciculus, 
which is associated with behavioral regulation (29). Vergara et al. 
reported that data from resting-state fMRI used to assess network 
connectivity was more accurate than DTI in detecting mild traumatic 
brain injury at the group level (30). Luo et al. reported that a support 
vector machine algorithm of multiparametric fMRI data in patients 
with mild traumatic brain injury could improve the classification 
performance of mTBI compared to normal controls by using the brain 
regions associated with emotion and cognition (27). Lui et al. (24) 
reported that an algorithm developed from multi-feature analysis of 
data from diffusion-weighted imaging, fMRI, and volumetrics may aid 
in the classification of patients with mTBI compared to controls (24). 
Abdelrahman et al. reported that combining multiple DTI metrics 
improved the accuracy of identifying patients with chronic moderate 
brain injury, with a mean time since injury of 9 years, compared with 
controls (31).

ML has also been widely applied to multiparametric clinical MRI 
data in oncology and other medical conditions (32, 33). The purpose 
of using ML has been to develop clinical tools that support diagnoses, 
predict prognoses, and predict responses to treatment for different 
diseases and medical conditions (33). In our previous work, 
we developed a PCS index (PCSI) for patients with a history of mTBI, 
using a feature selection process applied to multiparametric structural 
and diffusion MRI data. The PCSI combines complex radiomic 
information from the MP RAGE series, fractional anisotropy (FA), 
and apparent diffusion coefficient (ADC) series (26). This method 
enabled the detection of post-concussive imaging changes in all series, 
even when no apparent findings were evident on clinical MRI exams.

The objective of this study was to further evaluate the performance 
of a multiparametric MRI-based PCSI to detect post-concussive injury 
in a real-world clinical environment. A significant limitation of the 
previous study was the control population, which consisted of a relatively 
small number of young, healthy control athletes. Here, we expand the 
application of the PSCI to a significantly larger number of routine clinical 
patients diagnosed with mTBI and patients referred for neuroimaging 
without history of prior brain injury to explore the associations of the 
PCSI with sex, mechanism of injury, elapsed time from injury, prior 
concussion history and clinical symptoms in patients aged 18–60.

Materials and methods

Participants

The Research Subjects Review Board of the University of 
Rochester approved this retrospective study. Figure  1 shows the 

Abbreviations: AI, artificial intelligence; ML, machine learning; mTBI, mild traumatic 

brain injury; SRC, sports related concussion; PCS, post-concussion syndrome; 

DTI, diffusion weighted imaging; FA, fractional anisotropy mapping from DTI 

sequences; ADC, apparent diffusion coefficient from DTI sequences.
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inclusion and exclusion criteria for this retrospective review of the 
medical records of patients referred to an outpatient MRI center from 
2016 to 2022. MRI was performed for 309 uninjured patients ranging 
in age from 18 to 60 years who were referred for MRI because of 
non-trauma related subjective complaints of headaches (n = 88), 
hearing loss (n = 132), or other complaints (N = 42), and who had 
normal MRI examinations. The uninjured patients also included 27 
student athletes recruited as part of the prior study (26). A 

retrospective review was also performed of the medical records from 
2016 to 2022 for 139 patients ranging in age from 18 to 60 years who 
were referred for MRI at the same facility by Sports Medicine 
Physicians, Physical Medicine, and Rehabilitation Physicians, or 
Neurologists with the diagnosis of concussion based on clinical 
history and combination of symptoms (4, 6–8, 10–18). The inclusion 
criteria included a clinical diagnosis of concussion with persistent 
post-concussion symptoms (PCS) and MRI performed at least 2 weeks 

FIGURE 1

Inclusion–exclusion criteria for the study participants. This paper presents the performance of the PCSI on the validation participants.
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and no later than 12 months after mTBI, excluding those subjects with 
dental braces, prior brain surgery, ventricular shunts, intracranial 
hemorrhage, intra-axial MRI signal abnormalities, skull fractures, or 
standard contraindications for MR. Thirty eight patients received MR 
exams within 90 days from injury; 17 between 90 and 180 days from 
injury, 7 between 180 and 270 days from injury, with the remaining 7 
between 270 days and 1 year from injury. Twenty five injured and 25 
uninjured subjects were excluded due to issues with the MRI exams, 
such as missing series required for analysis, or excessive artifact. 
Patient age and sex, number of previous concussions, absence of loss 
of consciousness (LOC) at the most recent concussion, the time 
between injury and MRI, and persistent signs and symptoms were 
extracted from the electronic medical records. All patient identifiers 
were removed prior to the analysis.

Image acquisition

All MRI exams for the concussed patients and 27 student athlete 
controls were performed between 2016, and 2022, on one of two 3 T 
Siemens Skyra MRI Scanners using a 20-channel Head/Neck Coil 
using the following imaging protocol: T1- weighted MP-RAGE images 
(FOV = 250 mm, 208 axial slices; 1  ×  1  ×  1 mm, TR = 1,200 ms, 
TE = 2.29 ms, TI = 600 ms), Flip angle = 8 degrees, 3D axial SWI images 
[FOV 220 mm, 88 slices/1.5 mm slice thickness (interleaved)/TR 
27 ms, TE 29 ms, 1 average], DTI acquisition parameters were axial 
DTI/TA:10:14 min, FOV 256 mm, 70 slices, 2 mm slice thickness, TR 
9,000 ms, TE 88 ms, Flip Angle 15°, 1 average, Acceleration Factor 2/
ref. lines 24, diffusion directions 64, b-value 1:0 s/mm2; b-value 
2:1,000 s/mm2. Diffusion images were also corrected for susceptibility 
distortions with the acquisition of a sequence with 64 PA reversed-
phase directions. Double IR FLAIR images were obtained for the 
concussed patients (26).

For the other control patients (n = 309), Sagittal T1 FLAIR, Axial 
MP-RAGE, and DTI images were acquired identically to the 
concussed patients. All image sets in this study were anonymized and 
correlated with clinical data. Axial T2-FLAIR images were also 
obtained for control subjects.

Image analysis

Image preprocessing, segmentation, and 
quantification

For each subject, three MRI series (MPRAGE, Apparent Diffusion 
Coefficient, and Fractional Anisotropy) were co-registered using 3D 
Affine registration with spline deformation and segmented into two 
tissue types (gray and white matter) in eight anatomical subregions 
using a derivative of the 152c Montreal Brain atlas. These subregions 
included the right and left temporal, occipital, parietal, and frontal 
lobes. Five radiomic quantifications were performed, including raw 
signal measurement, fractal signature, and three-level wavelet 
decompositions, which provided information regarding the three-
dimensional texture patterns of the measurements. The two tissues, 
three MRI series, eight subregions, and five radiomic measurements 
yielded 240 numeric sets, each further described by 33 statistical 
descriptions ranging from simple arithmetic mean and standard 
deviation to complex representations of numeric distribution, yielding 

a total set of 7,920 individual quantitative values for each subject. 
Logistic Regression with L1 regularization was used to estimate a 
subset of features to build the Post-Concussive Syndrome Index 
(PCSI) (34). The PCSI is a mathematical formula that produces a value 
between 0 and 1 for each subject based on the values of the subset of 
radiomic measurements, with values less than 0.5 regarded as 
consistent with uninjured healthy subjects and values of 0.5 or greater 
associated with post-concussive subjects. Thus, the PCSI value 
represents the probability of PCS based on the multidimensional MRI 
signal. Details of the image processing and ML are provided by 
Tamez-Peña et al. (26). All image processing was performed using 
CIPAS (Qmetrics Technologies, Rochester, NY), and prediction of the 
PCSI was carried out using R 4.1.2, with the FRESA.CAD 3.3.1 
Package (35).

Statistical analysis
For each participant, we recorded the PCSI, sex, age, weight, health, 

origin of trauma or condition, and clinical symptoms at the time of the 
MRI. Age, weight, height, and PCSI of subjects in the validation set were 
described by mean and standard deviation and stratified by cases and 
controls. Statistical differences between the cases and controls were 
computed using t-tests for age, height, and weight. The PCSI was 
described using receiver operating characteristics (ROC) and the area 
under the ROC curve (ROCAUC). This paper also reports the accuracy, 
sensitivity, specificity, and diagnostic odds ratio between concussed and 
non-concussed subjects with their corresponding confidence intervals. 
The behavior of PCSI values for control group subsets (uninjured subjects 
with hearing loss, headaches, other indications, or young athletes) was 
described by frequency and PCSI association using violin plots and 
compared using ROC analysis. PCSI values of injured subjects were 
compared according to sex, loss of consciousness at the time of injury, 
mechanism of injury (sports, vehicular injuries, and assaults/falls), time 
interval from injury to MRI examination, prior concussion history, and 
reported symptoms. Significant associations with binary symptoms were 
computed using the Wilcoxon signed-rank test, and the effect size was 
described by ROCAUC. None of the p-values were adjusted for multiple 
comparisons. All statistical analyses were performed using R 4.2.2.

Results

Table  1 presents the demographic characteristics of the study 
participants. The MRI indication for the control/uninjured participants 
was hearing loss (n = 132), followed by headache (n = 88), and several 
other conditions (n = 42). The mechanism of injury in the case/PCS 
participants was sports-related (n = 34), motor vehicle use (n = 14), or 
other causes (n = 21). The sex distribution of the case/control sets was 
statistically different, where female participants were slightly more 
common in the control group than in the case group, although there were 
more females than males in both groups. There were marked differences 
between the age at injury of the participants (cases) and normal clinical 
patients (controls). Controls were slightly older (42.7 ± 11.2 years) than 
cases (31.9 ± 14.3 years). Another significant difference in this cohort was 
the weight of the control participants being heavier than the cases 
(90.3 ± 25.3 kg vs. 77.3 ± 20.7 kg, p < 0.001).

Regarding the PCSI, Figure 2 shows the distribution of the 
index across all patients stratified by sex. The PCSI could separate 
PCS subjects from non-injury subjects using the injury threshold 
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of 0.5 with an accuracy of 0.88 (95%CI [0.84, 0.92]), sensitivity of 
0.64 (95%CI [0.51, 0.75]), specificity of 0.95 (95%CI [0.91, 0.97]), 
diagnostic odds ratio (DOR) of 31 (95%CI [15, 65]), and 
ROCAUC 0.87 (95%CI [0.82, 0.92]). The performance of the 
index was similar between males and females with sensitivity, 
specificity, and DOR of 0.63, 0.97, and 63 vs. 0.64, 0.93, and 23 for 
males and females, respectively.

Because there was a strong age imbalance between the cases and 
controls, we tested the hypothesis that the index was not associated 
with the participant’s age. The test consisted of modeling the PCSI by 
participant age adjusted by subject class (Case or Control). The results 
of the model indicated that subject class predicted most of the variance 
in the PCSI (p < 0.001), while age did not (p = 0.42). Hence, the PCSI 
was not affected by participant age.

Exploratory analysis of the PCSI

Table  2 shows the distribution of the most common PCS 
symptoms and their association with the PCSI. The most common 
symptom of PCS was headache (87%), followed by concentration 
issues (62%). Headache was not associated with the index value, 
but the presence of vision problems was associated with a higher 
index value [0.671 vs. 0.478, p(P > A) = 0.02]. Concentration 
problems and anxiety showed a trend [(P > A) < 0.1] of higher 
index values when symptoms were present. Both the symptoms 
had a ROCAUC of 0.6. Figure 3 shows the distribution of the 
PCSI for the three top symptoms as well as the distribution of the 
PCSI and the presence of neck pain. The neck pain results showed 
a negative trend of having a lower index value for subjects 
reporting neck pain vs. patients without neck pain [p = 0.440, 
A = 0.636, p(P < A) = 0.03].

Figure 4 shows the distribution of the PCSI concerning the history 
of previous concussions, loss of consciousness, and the mechanism of 
trauma. In these cases, we observed a positive trend toward a higher 
PCSI value in the three exploratory analyses, but none of them 
reached statistical significance (p > 0.1).

We also explored the effect of elapsed time from injury on the 
PCSI and observed a non-significant trend of diminishing index 
values with increasing time from injury (p = 0.12).

The final exploratory analysis explored the behavior of the index 
in non-trauma participants. The results are presented at the bottom of 
Table 2. The hearing loss, headache, and other patient subcohorts had 
non-significantly different PCSI values than the other non-trauma 
patients [p(A ≠ B) = 0.16, 0.88, and 0.09, respectively].

Discussion

This study showed that our previously developed ML-based 
classifier, the PCSI, enabled differentiation of real-world patients with 
clinically diagnosed mTBI from those without history of head injury 
with statistical accuracy (26). In this study, we further evaluated the 
performance of the PCSI by classifying a broader demographic of 
injured patients with PCS and comparing them with a broader control 
population of uninjured subjects aged between 18 and 60 years, imaged 
on multiple MRI scanners. The results of this study indicate that PCSI 
performed well in the real-world population, with a mean PCSI value 
of 0.57 for patients with PCS and a mean PCSI value of 0.12 for control 
subjects (ROCAUC 0.87, 95%CI [0.84, 0.92]). The PCSI had a sensitivity 
of 64%, specificity of 95%, and accuracy of 88% for the evaluation of 
patients with PCS. Clear differences in PCSI between controls and 
injured patients were observed across population subgroups, including 
females, males, sports-related mTBI, and non-sports-related mTBI, as 
well as sub-cohorts of injured and non-injured athletes. These results 
further suggest that the PCSI detects post-injury microtrauma, and that 
mTBI subjects with PCS exhibit significant differences in the content of 
the MRI information from combined structural and DTI image data as 
compared to uninjured subjects.

The PCSI performance of 88% accuracy with 65% sensitivity 
compares well with the reported work of Fleck et al. (36) that showed 
classification accuracy of only 62%. The main difference is that our 
work is based on an open adult population, while their study 
concentrated on an adolescent population. Other studies on the use 
of AI in mTBI showed similar performance, with sensitivity varying 
from 68% (Mitra) (28), 79% (Goswami) (29), to 89% (Vergara) (30). 
Even though these last three studies used mTBI subjects instead of 
PCS subjects, they illustrated that AI has an important role in 
identifying subtle differences in brain function or microstructure that 
may have clinical relevance in the near future.

TABLE 1 Demographics of the PCSI validation cohort.

All (n  =  333) Females
(n  =  189)

Males
(n  =  143)

Control
(n  =  264)

Case
(n  =  69)

(F/M/N)
150/113/1

(F/M/N)
39/30/0

MRI indication:
Hear loss  =  132
Headache  =  88

Other  =  42

Trauma origin:
Sports  =  34 
MVA  =  14 

Other  =  21

Control 
(n =  150)

Case
(n =  39)

Control 
(n =  113)

Case
(n =  30)

Age (years) 42.7 (11.2) 31.9 (14.3)*** 41.6 (11.0) 33.1 (14.7)** 44.4 (11.2) 30.4 (13.8)***

Height (cm) 170.1 (10.4) 170.7 (10.9) 163.7 (7.3) 164.6 (7.7) 178.4 (7.6) 178.7 (9.3)

Weight (kg) 90.3 (25.3) 77.3 (20.7)*** 82.7 (23.7) 71.6 (19.9)** 100.7 (23.7) 84.8 (19.6)**

PCS index 0.12 (0.17) 0.57 (0.34)*** 0.13 (0.19) 0.57 (0.37)*** 0.10 (0.14) 0.60 (0.31)***

*p < 0.05, **p < 0.01, ***p < 0.001.
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Although performance of the PSCI is good, the current method is 
based on a simple logistic model with L1 penalization. In the future, a 
more elaborate ML method may be  able to be  implemented, 
considering the source of individual misclassification errors, or the 
inclusion of additional clinically relevant information to further 
enhance accuracy. Furthermore, the presented results were validated 
using the same hardware, obtained using the same protocol on the 
same types of 3.0 Tesla MRI scanners, thus enabling data 
harmonization. Therefore, the performance of the developed PCSI 
must be evaluated on other types of MRI scanners, such as 3 or 1.5 
Tesla, and with other diffusion tensor imaging protocols.

No significant differences were found in the PCSI based on sex for 
the control group or the mTBI cohort, consistent with previously 
reported results regarding the effect of sex on the frequency of PCS 
and rate of clinical recovery (37). The analysis of the PCSI showed a 
non-statistically significant, slightly downward trend associated with 
increased time intervals between injury and MRI. These findings are 

similar to those of multiple prior studies that showed persistent 
changes in individual DTI metrics from weeks to months after mTBI 
although the specific DTI metrics were inconsistent in their behavior 
(5, 18, 38–41). These observations are consistent with previous 
findings of partial resolution of alterations in AD and MD in cerebral 
white tracts from 2 weeks to 6 months post-mTBI, compared with 
persistent changes in lower FA. Contradictory results have been 
reported regarding the outcome of patients with PCS in relation to the 
number of prior concussions (17, 40, 42, 43). In our study, the 
relationship between the number of prior concussions and the PCSI 
showed a trend of increasing PCSI values for subjects with a history 
of more prior concussions; however, this did not reach statistical 
significance. In our study, no statistically significant differences were 
found in the PCSI values when comparing sub-cohorts of injured 
subjects who lost consciousness at the time of injury and those who 
did not, consistent with previous reports that loss of consciousness is 
not associated with an increased rate and duration of PCS (17, 44).

FIGURE 2

Distribution of the PCSI. Top left, violin plots of the cases and controls stratified by gender. Top right, ROC plot of all subjects. Bottom plots, ROC plots 
of Males and Females.
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The exploratory analysis of the case subjects revealed that certain 
symptoms were associated with higher PCSI values. Specifically, 
we  found that participants with vision problems had higher PCSI 
values than those without vision problems. Similar trends were 
observed for anxiety and concentration. As illustrated in Figure 3, 
subjects who reported vision problems, including blurring, had higher 
index values than those who did not (45). Upon examination, all 
patients with vision problems complained of either binocular blurred 
vision or convergence insufficiency. At least 12 of the 30 participants 
with vision problems also reported LOC after a concussive episode. 
Unfortunately, a complete ophthalmologic report was unavailable for 
these subjects; therefore, our ability to localize the potential injury site 
was limited. However, blurred vision is often the result of diplopia or 
nystagmus, which can occur from dysfunction in pathways located in 
the midbrain, a region with known biomechanical vulnerability to 
concussive forces (45). The connection between these symptoms and 
midbrain dysfunction is more likely for the subset of subjects 
presenting with both blurred vision and LOC, indicating midbrain-
thalami involvement.

It is worth noting that the PCSI was negatively correlated with the 
presence of neck pain in the subset of cases whose trauma originated 
from motor vehicle accidents, which suggests the possibility of PCS 
symptoms originating from neck injury rather than structural brain 
microtrauma, assuming greater prevalence of neck injury due to MVA 
than other causes of mTBI (46, 47).

Our prior study suggested that the PCSI was able to detect 
structural post-injury microtrauma in the brain, but was limited by a 
small, relatively young control demographic. In this study, 
we expanded the study of the PCSI to include subjects injured in 
everyday activities outside of athletics, and uninjured subjects 

undergoing neuroimaging for tinnitus and migraine, but otherwise 
healthy, with normal MRI exam findings and no history of head 
trauma. This larger study population, imaged on multiple MRI 
scanners, demonstrated that the PCSI continued to accurately 
differentiate subjects with history of mTBI and PCS from those 
without, even those with similar symptoms (headache). The results 
presented continue to suggest the PCSI detects structural microtrauma 
associated with mTBI. Significant limitations include a lack of 
objective data confirming neurological injury, such as histopathology 
or force vector data from the injury event that could be compared with 
PSCI results to show positive correlation with injury. PCSI values 
could add confidence to diagnosis of concussion and determination 
of return to activity based on resolution of symptoms. Although our 
data trends show the PCSI diminishes with time from injury, we have 
no proof that the PCSI follows patient recovery from mTBI, given the 
lack of PCSI information from mTBI patients without PCS, e.g., those 
who have clinically recovered. Thus, the results presented in this study 
do not conclusively indicate whether the PCSI can predict the 
resolution of PCS or whether brain changes observed due to mTBI are 
permanent fixtures in affected patients. We hope to address this in 
future work examining longitudinal correlation of PCSI values and 
symptomatic recovery, perhaps providing prognostic information 
about recovery timelines. Sub-regional PSCI information could also 
help physicians determine patient-specific recovery therapy.

Conclusion

The results of this study show that the previously developed PCSI 
applied to multiparametric MR data from individuals aged between 

TABLE 2 Symptoms and PCSI.

Symptom Frequency (%) Mean index 
present

Mean index 
absent

ROCAUC

Cases (n = 69)

Headache 60 (87%) 0.567 0.572 0.50

Concentration 43 (62%) 0.604 0.507 0.59

Photophobia 39 (57%) 0.535 0.610 0.43

Fatigue 35 (51%) 0.593 0.542 0.56

Sleep 35 (51%) 0.584 0.551 0.53

Dizziness 34 (49%) 0.550 0.585 0.46

Memory problems 34 (49%) 0.528 0.606 0.44

Mood problems 33 (48%) 0.572 0.564 0.49

Noise sensitivity 33 (48%) 0.532 0.600 0.44

Vision problems 32 (46%) 0.671 0.478 0.66*

Anxiety 31 (45%) 0.633 0.514 0.60

Nausea 31 (45%) 0.594 0.546 0.55

Irritability 28 (41%) 0.543 0.585 0.54

Neck pain 24 (35%) 0.440 0.636 0.34*

Balance 21 (30%) 0.489 0.602 0.40

Controls (n = 264)

Hearing loss 132 (50%) 0.118 0.100 0.50

Headache 88 (34%) 0.143 0.094 0.54

Other 44 (16%) 0.147 0.121 0.44

Bold values indicate ROC AUC greater than 0.6. *p < 0.1.
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18 and 60 years can accurately classify and differentiate patients with 
PCS from controls from 2 weeks to 1 year after mTBI with high 
sensitivity, specificity, and accuracy. No statistically significant 
differences were found in the PCSI values when compared by sex or 
loss of consciousness at the time of injury and those who did not. The 
results of this study suggest that the PCSI has great potential as an 
objective clinical tool to support the diagnosis, treatment, and 

follow-up care of patients with PCS. Further research is required to 
investigate the replicability of this method using other types of clinical 
MRI scanners. The PCSI could also provide sub-regional information 
about MRI-based structural abnormalities; additional investigation to 
compare localized PCSI data with objective data on injury localization 
would further increase confidence in the correlation of the PCSI 
values with post-traumatic brain injury microtrauma. Finally, work to 

FIGURE 3

Violin plots of the distributions of the PCSI based on the case symptoms. Subjects reporting vision problems had PCSI values larger than subjects 
without problems (p  =  0.02). Subjects reporting neck pain had lower PSCI values than subjects without neck pain (p  =  0.03). The other symptoms had 
non-significant differences between the presence or absence of symptoms.

FIGURE 4

Violin plots showing the distribution of case subjects according to the history/origin of the concussion. Left, distribution based on the number of 
concussions. Middle, PCSI distribution according to the history of loss of consciousness. Right, differences between the origin of the trauma: Sports 
injury or another traumatic event.
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examine PCSI behavior on patients recovering from mTBI including 
those who have recovered symptomatically, e.g., without PCS, could 
provide useful information on the relationship between symptomatic 
resolution and whether this is due to brain plasticity or the healing of 
structural injuries.
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